1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
| EncryptionParameters parms(scheme_type::ckks);
size_t poly_modulus_degree = 8192; parms.set_poly_modulus_degree(poly_modulus_degree); parms.set_coeff_modulus(CoeffModulus::Create(poly_modulus_degree, { 40, 40, 40, 40, 40 }));
SEALContext context(parms); print_parameters(context); cout << endl;
KeyGenerator keygen(context); SecretKey secret_key = keygen.secret_key(); PublicKey public_key; keygen.create_public_key(public_key); RelinKeys relin_keys; keygen.create_relin_keys(relin_keys); GaloisKeys galois_keys; keygen.create_galois_keys(galois_keys); Encryptor encryptor(context, public_key); Evaluator evaluator(context); Decryptor decryptor(context, secret_key);
CKKSEncoder ckks_encoder(context);
size_t slot_count = ckks_encoder.slot_count(); cout << "Number of slots: " << slot_count << endl; vector<double> input; input.reserve(slot_count); double curr_point = 0; double step_size = 1.0 / (static_cast<double>(slot_count) - 1); for (size_t i = 0; i < slot_count; i++, curr_point += step_size) { input.push_back(curr_point); } cout << "Input vector:" << endl; print_vector(input, 3, 7);
auto scale = pow(2.0, 50);
print_line(__LINE__); cout << "Encode and encrypt." << endl; Plaintext plain; ckks_encoder.encode(input, scale, plain); Ciphertext encrypted; encryptor.encrypt(plain, encrypted);
Ciphertext rotated; print_line(__LINE__); cout << "Rotate 2 steps left." << endl; evaluator.rotate_vector(encrypted, 2, galois_keys, rotated); cout << " + Decrypt and decode ...... Correct." << endl; decryptor.decrypt(rotated, plain); vector<double> result; ckks_encoder.decode(plain, result); print_vector(result, 3, 7);
|