本例中演示了一个多项式函数的求值
x是位于区间[0,1]的一组4096等距点中的一个加密浮点输入数据。这个例子演示了CKKS方案的主要特性。
首先选择方案
1 EncryptionParameters parms(scheme_type ::ckks);
在2_encoders中看到CKKS的乘法导致密文规模增长。任意密文的规模都不能太接近coeff_modulus的总大小,否则存储放大的明文将耗尽空间。CKKS方案提供了一个rescale功能,用于减小scale并稳定scale扩展。
rescale是一种模切换操作(参考3_levels)。在转换模数时,会从coeff_modulus中移除最后一个素数,这将缩小密文。更精确地说,假设CKKS密文中的scale为S,当前coeff_modulus中的最后一个素数是P,rescale下一层将scale更改为S/P,并从coeff_modulus中去除P。素数的数量限制了rescale的次数,从而限制了计算的乘法深度。
自由选择初始scale是可能的。一个方法是在coeff_modulus中设置初始scale S和素数P_i非常接近。如果在乘法操作之前的scale是S,则操作后scale变为\(S^2\) ,rescale后scale变为\(S^2/P_i\) 。若所有\(P_i\) 都接近于S,则\(S^2/P_i\) 就接近于S。通过这种方法,可以在整个计算过程中使scale稳定在接近S。一般来说,对于深度为D的电路,需要rescale D次,即把D个素数从coeff_modulus中去除。一旦coeff_moudlus中只剩下一个素数,要求这个素数必须比S大几个位,以保留明文在小数点前的值。
通常选择CKKS方案的参数如下: (1)选择一个60位素数作为coeff_modulus中的第一个素数。这提供了解密时的最高精度; (2)选择另一个60位素数作为coeff_modulus的最后一个元素,它作为特殊素数,应该与其他素数中的最大素数相等; (3)中间的素数应该相接近。
使用CoeffModulus::Create生成合适大小的素数。注意coeff_modulus是200位的,低于poly_modulus_degree的界限:coeff_modulus_degree::MaxBitCount(8192)返回218.
1 2 3 size_t poly_modulus_degree = 8192 ;parms .set_poly_modulus_degree(poly_modulus_degree);parms .set_coeff_modulus(CoeffModulus::Create(poly_modulus_degree, { 60 , 40 , 40 , 60 }));
选择初始规模位\(2^{40}\) 。在最后一层,小数点前留下60-40=20位精度,小数点后留下足够的精度(大约10-20位)。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 double scale = pow (2.0 , 40 );SEALContext context (parms) ;print_parameters (context); cout << endl;KeyGenerator keygen (context) ;auto secret_key = keygen.secret_key (); PublicKey public_key; keygen.create_public_key (public_key); RelinKeys relin_keys; keygen.create_relin_keys (relin_keys); GaloisKeys gal_keys; keygen.create_galois_keys (gal_keys);Encryptor encryptor (context, public_key) ;Evaluator evaluator (context) ;Decryptor decryptor (context, secret_key) ;CKKSEncoder encoder (context) ;size_t slot_count = encoder.slot_count (); cout << "Number of slots: " << slot_count << endl; vector<double > input; input.reserve (slot_count);double curr_point = 0 ;double step_size = 1.0 / (static_cast <double >(slot_count) - 1 );for (size_t i = 0 ; i < slot_count; i++) { input.push_back (curr_point); curr_point += step_size; } cout << "Input vector: " << endl;print_vector (input, 3 , 7 ); cout << "Evaluating polynomial PI*x^3 + 0.4x + 1 ..." << endl;
为PI、0.4和1创建明文,使用CKKSEncoder将给定浮点值编码为向量的每个slot
1 2 3 4 5 6 7 8 9 10 11 Plaintext plain_coeff3 , plain_coeff1 , plain_coeff0 ;encoder .encode(3 .14159265 , scale, plain_coeff3 );encoder .encode(0 .4 , scale, plain_coeff1 );encoder .encode(1 .0 , scale, plain_coeff0 );Plaintext x_plain;print_line (__LINE__);cout << "Encode input vectors." << endl;encoder .encode(input, scale, x_plain);Ciphertext x1 _encrypted;encryptor .encrypt(x_plain, x1 _encrypted);
为了计算\(x^3\) ,首先计算\(x^2\) 并执行relinearize操作,scale增长至\(2^{80}\)
1 2 3 4 5 6 Ciphertext x3 _encrypted;print_line (__LINE__);cout << "Compute x^2 and relinearize:" << endl;evaluator .square(x1 _encrypted, x3 _encrypted);evaluator .relinearize_inplace(x3 _encrypted, relin_keys);cout << " + Scale of x^2 before rescale: " << log2 (x3 _encrypted.scale()) << " bits" << endl;
执行rescale操作;除了模数切换之外,scale减少了一个因子,该因子等于被去掉的素数(40位素数)。因此新的scale应该接近\(2^{40}\) 。
1 2 3 4 print_line(__LINE__) cout << "Rescale x^2." << endl evaluator.rescale_to_next_inplace(x3_encrypted) cout << " + Scale of x^2 after rescale: " << log2(x3_encrypted.scale()) << " bits" << endl
现在得到的x3_encrypted和x1_encrypted位于不同的level,这使得我们无法直接将其相乘来计算\(x^{3}\) 。我们可以简单地将x1_encryption切换到模数转换链的下一个元素。但是由于我们还需要将\(x^{3}\) 与PI(plain_coeff3)相乘,所以我们可以先将PI与x相乘(得到x1_encrypted_coeff3),再将得到的结果与\(x^{2}\) 相乘,得到\(PI*x^{3}\) .
1 2 3 4 5 6 7 8 print_line (__LINE__);cout << "Compute and rescale PI*x." << endl;Ciphertext x1 _encrypted_coeff3 ;evaluator .multiply_plain(x1 _encrypted, plain_coeff3 , x1 _encrypted_coeff3 );cout << " + Scale of PI*x before rescale: " << log2 (x1 _encrypted_coeff3 .scale()) << " bits" << endl;evaluator .rescale_to_next_inplace(x1 _encrypted_coeff3 );cout << " + Scale of PI*x after rescale: " << log2 (x1 _encrypted_coeff3 .scale()) << " bits" << endl;
因为x3_encrypted与x1_encrypted_coeff3具有相同的scale,且使用相同的加密参数,因此可以直接将其相乘。
1 2 3 4 5 6 7 print_line(__LINE__ ) ; cout << "Compute, relinearize, and rescale (PI*x)*x^2." << endl; evaluator.multiply_inplace(x3_encrypted , x1_encrypted_coeff3 ) ; evaluator.relinearize_inplace(x3_encrypted , relin_keys ) ; cout << " + Scale of PI*x^3 before rescale: " << log2(x3_encrypted.scale() ) << " bits" << endl; evaluator.rescale_to_next_inplace(x3_encrypted ) ; cout << " + Scale of PI*x^3 after rescale: " << log2(x3_encrypted.scale() ) << " bits" << endl;
接下来计算一次项
1 2 3 4 5 6 print_line (__LINE__);cout << "Compute and rescale 0.4*x." << endl;evaluator .multiply_plain_inplace(x1 _encrypted, plain_coeff1 );cout << " + Scale of 0.4*x before rescale: " << log2 (x1 _encrypted.scale()) << " bits" << endl;evaluator .rescale_to_next_inplace(x1 _encrypted);cout << " + Scale of 0.4*x after rescale: " << log2 (x1 _encrypted.scale()) << " bits" << endl;
接下来需要求三项的和,但是问题是这三项使用的加密参数是不同的,因为模数经过了rescale转换(加密的加法和减法要求level相同且加密参数匹配,若不匹配则抛出异常)
1 2 3 4 5 6 7 8 9 10 cout << endl; print_line(__LINE__ ) ; cout << "Parameters used by all three terms are different." << endl; cout << " + Modulus chain index for x3_encrypted: " << context.get_context_data(x3_encrypted .parms_id () )->chain_index() << endl; cout << " + Modulus chain index for x1_encrypted: " << context.get_context_data(x1_encrypted .parms_id () )->chain_index() << endl; cout << " + Modulus chain index for plain_coeff0: " << context.get_context_data(plain_coeff0 .parms_id () )->chain_index() << endl; cout << endl;
将系数中的素数表示为\(P_{0}、P_{1}、P_{2}、P_{3}\) ,其中\(P_{3}\) 作为特殊模数不涉及rescale
1 2 3 4 5 6 7 8 - Product x^2 has scale 2 ^80 and is at level 2 ; - Product PI*x has scale 2 ^80 and is at level 2 ; - We rescaled both down to scale 2 ^80 /P_2 and level 1 ; - Product PI*x^3 has scale (2 ^80 /P_2)^2 ; - We rescaled it down to scale (2 ^80 /P_2)^2 /P_1 and level 0 ; - Product 0.4 *x has scale 2 ^80 ; - We rescaled it down to scale 2 ^80 /P_2 and level 1 ; - The contant term 1 has scale 2 ^40 and is at level 2.
虽然三项的scale都大约是\(2^{40}\) ,但它们的确切值是不同的,因此不能相加
1 2 3 4 5 6 7 8 9 10 print_line (__LINE__); cout << "The exact scales of all three terms are different:" << endl;ios old_fmt (nullptr ) ; old_fmt.copyfmt (cout); cout << fixed << setprecision (10 ); cout << " + Exact scale in PI*x^3: " << x3_encrypted.scale () << endl; cout << " + Exact scale in 0.4*x: " << x1_encrypted.scale () << endl; cout << " + Exact scale in 1: " << plain_coeff0.scale () << endl; cout << endl; cout.copyfmt (old_fmt);
解决方法: (1)由于\(P_{1}\) 和\(P_{2}\) 非常接近\(2^40\) ,我们可以简单"欺骗"SEAL,直接设置为相同的scale。 (2)用\(2^{80}/P_{2}\) 对1进行编码,然后用0.4*x进行乘法运算,最后rescale。这种方法还需要我们确保使用适当的加密参数(parms_id)对1进行编码。
本例中使用第一种(最简单的)方法,将\(PI*x^{3}\) 和0.4*x的scale设置为\(2^{40}\) .
1 2 3 4 print_line (__LINE__);cout << "Normalize scales to 2^40." << endl;x3_encrypted .scale() = pow(2 .0 , 40 );x1_encrypted .scale() = pow(2 .0 , 40 );
还有加密参数不匹配的问题。使用传统的模数切换(没有rescale)就可以解决。
1 2 3 4 5 print_line(__LINE__ ) ; cout << "Normalize encryption parameters to the lowest level." << endl; parms_id_type last_parms_id = x3_encrypted.parms_id() ; evaluator.mod _switch_to_inplace(x1_encrypted , last_parms_id ) ; evaluator.mod _switch_to_inplace(plain_coeff0 , last_parms_id ) ;
现在即可将三个密文相加
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 print_line (__LINE__); cout << "Compute PI*x^3 + 0.4*x + 1." << endl; Ciphertext encrypted_result; evaluator.add (x3_encrypted, x1_encrypted, encrypted_result); evaluator.add_plain_inplace (encrypted_result, plain_coeff0); Plaintext plain_result;print_line (__LINE__); cout << "Decrypt and decode PI*x^3 + 0.4x + 1." << endl; cout << " + Expected result:" << endl; vector<double > true_result;for (size_t i = 0 ; i < input.size (); i++) { double x = input[i]; true_result.push_back ((3.14159265 * x * x + 0.4 ) * x + 1 ); }print_vector (true_result, 3 , 7 ); decryptor.decrypt (encrypted_result, plain_result); vector<double > result; encoder.decode (plain_result, result); cout << " + Computed result ...... Correct." << endl;print_vector (result, 3 , 7 );